

ASCE | KNOWLEDGE Unit 3: Learning Outcomes

- Upon completion of this unit, you will be able to :
 - Explain the differences between wind load and tornado load coefficients and equations
 - Choose appropriate values for the different tornado load coefficients
 - Calculate tornado velocity pressures and design pressures for various elements of a building or other structure
- This is important on the job because ...
 - Establishes the foundation for calculation of tornado loads

Wadena Deer Creek High Schoo Wadena, Minnesota June 17, 2010

ASCE | KNOWLEDGE & LEARNING

Part 1	Class	<i>z</i> ₀ , ft (m) ^a	α b	z'_g , ft (m) ^b	z _d (ft or m) ^c	Wind Flow and Landscape Description ^d
Surface roughness	1	0.0007 (0.0002)	12.9	509 (155)	$z_d = 0$	Sea: Open sea or lake (irrespective of wave size), tidal flat, snow covered flat plain, featureless desert, tarmac, and concrete, with a free fetch of several kilometers.
effects the vertical	2	0.016 (0.005)	11.4	760 (232)	$z_d = 0$	a new receiver of soveral knowneeds. Smooth: Featureless land surface without any noticeable obstacle and with negligible vegetation (e.g., beaches, pack ice withou large ridges, marsh, and snow-covered or fallow open country
velocity profile $z_0 = roughness length,$	3	0.1 (0.03)	9.0	952 (290)	$z_d = 0$	Open: Level countryside with low vegetation (e.g., grass) and isolated obstacles with separations of at least 50 obstacle heights (e.g., grazing land without windbreaks, heather, moor and tundra, runway area of airports). Ice with ridges across- wind.
which is a length-scale representation of the	4	0.33 (0.10)	7.7	1,107 (337)	$z_d = 0$	Roughly open: Cultivated or natural area with low crops or plan covers, or moderately open country with occasional obstacle (e.g., low hedges, isolated low buildings, or trees) at relativ horizontal distances of at least 20 obstacle heights.
roughness of the surface	5	0.82 (0.25)	6.8	1,241 (378)	$z_d = 0.2 z_H$	Rough: Cultivated or natural area with high crops or crops of varying height and scattered obstacles at relative distances or 12 to 15 obstacle heights for porous objects (e.g., shelterbelts or 8 to 12 obstacle heights for low solid objects (e.g., buildings).
	6	1.64 (0.5)	6.2	1,354 (413)	$z_d = 0.5 z_H$	Very rough: Intensely cultivated landscape with many rather larg obstacle groups (large farms, clumps of forest) separated by open spaces of about 8 obstacle heights. Low, densely plante major vegetation like bushland, orchards, young forest. Also area moderately covered by low buildings with interspaces of to 7 building heights and no high trees.
ASCE 7-16 and ASCE 7-22	7	3.3 (1.0)	5.7	1,476 (450)	$z_d = 0.7 z_H$	Skimming: Landscape regularly covered with similar-size large obstacles, with open spaces of the same order of magnitude a obstacle heights (e.g., mature regular forests, densely built-up
Wind Provisions	8	\geq matu (\geq mat)	5.2	1,610 (490)	Analysis by wind tunnel advised	area without much building height variation). Chaotic: City centers with mixture of low-rise and high-rise buildings or large forests of irregular height with many clearings. (Analysis by wind tunnel advised.)

Surface Roughness: Part 2

- Surface roughness is handled in ASCE 7 wind provisions using 3 roughness categories
- For each upwind direction considered in the design of the building, surface roughness(es) are characterized for the for the purpose of assigning an exposure category
- The commentary of ASCE 7-22 (Section C26.7) describes modest changes in the assumed z₀ values used to derive the actual velocity profiles, but no changes were made to the general surface roughness category descriptions shown at right

26.7.2 Surface Roughness Categories.

Surface Roughness B. Urban and suburban areas, wooded areas, or other terrain with numerous, closely spaced obstructions that have the size of single-family dwellings or larger.

Surface Roughness C. Open terrain with scattered obstructions that have heights generally less than 30 ft (9.1 m). This category includes flat, open country and grasslands.

Surface Roughness D. Flat, unobstructed areas and water surfaces. This category includes smooth mud flats, salt flats, and unbroken ice.

ASCE 7-16 and ASCE 7-22 Wind Provisions

ASCE | KNOWLEDGE & LEARNING

11

Exposure: Part 1

26.7 EXPOSURE

For each wind direction considered, the upwind exposure shall be based on ground surface roughness that is determined from natural topography, vegetation, and constructed facilities.

26.7.1 Wind Directions and Sectors.

For each selected wind direction at which the wind loads are to be determined, the exposure of the building or structure shall be determined for the two upwind sectors extending 45° on either side of the selected wind direction. The exposure in these two sectors shall be determined in accordance with Sections 26.7.2 and 26.7.3, and the exposure the use of which would result in the highest wind loads shall be used to represent the winds from that direction.

ASCE | KNOWLEDGE & LEARNING ASCE 7-16 and ASCE 7-22 Wind Provisions

Exposure: Part 4 26.7.4 Exposure Requirements. 26.7.4.1 Directional Procedure (Chapter 27). For each wind direction considered, wind loads for the design of the MWFRS of enclosed and partially enclosed buildings using the Directional Procedure of Chapter 27 shall be based on the exposures as defined in Section 26.7.3. Wind loads for the design of open buildings with monoslope, pitched, or troughed free roofs shall be based on the exposures, as defined in Section 26.7.3, resulting in the highest wind loads for any wind direction at the site. 26.7.4.3 Directional Procedure for Building Appurtenances and Other Structures (Chapter 29). Wind loads for the design of building appurtenances (such as rooftop structures and equipment) and other structures (such as solid freestanding walls and freestanding signs, chimneys, tanks, open signs, single-plane open frames, and trussed towers) as specified in Chapter 29 shall be based on the appropriate exposure for each wind direction considered. 26.7.4.4 Components and Cladding (Chapter 30). Design wind pressures for C&C shall be based on the exposure category resulting in the highest wind loads for any wind direction at the site ASCE 7-16 and ASCE 7-22 Wind Provisions ASCE | KNOWLEDGE & LEARNING 15

Topographic Factor: Part 1	26.8 TOPOGRAPHIC EFFECTS
 K_{zt}, accounts for speed-up effects of wind flowing over hills and escarpments 	26.8.1 Wind Speed-Up over Hills, Ridges, and Escarpments. Wind speed-up effects at isolated hills, ridges, and escarpments constituting abrupt changes in the general topography, located in any exposure category, shall be included in the determination of the wind loads when site conditions and locations of buildings and other structures meet all of the following conditions:
	 The hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topographic features of comparable height for 100 times the height of the topographic feature (100<i>H</i>) or 2 mi (3.22 km), whichever is less. This distance shall be measured horizontally from the point at which the height <i>H</i> of the hill, ridge, or escarpment is determined.
	2. The hill, ridge, or escarpment protrudes above the height of upwind terrain features within a 2-mi (3.22-km) radius in any quadrant by a factor of 2 or more.
ASCE 7-16 Wind Provisions	3. The building or other structure is located as shown in Fig. 26.8-1 in the upper one-half of a hill or ridge or near the crest of an escarpment.
	4. $H/L_H \ge 0.2$
	5. is greater than or equal to 15 ft (4.5 m) for Exposure C and D and 60 ft (18 m) for Exposure B.

Topographic F	actor:	Parameters for Sp			6.8-1 To and Esca			Facto	r, <i>K</i> z	t			
Part 2							K ₁	/(H/L)	")			μ	
								Exposure					
Equations		Hill Shape					В	C	D	γ	Upwind of Crest	Downw of Cres	
$K_{-t} = (1 + K_1 K_2 K_3)^2$		2D ridges (or valleys	with nega	ative H	in $K_1/(H$	$(/L_h)$	1.30	1.45	1.55	3	1.5	1.5	ı
1 1 2 32		2D escarpments					0.75	0.85	0.95	2.5	1.5	4	
K_1 = determined from tal	ala	3D axisymmetrical h	ill				0.95	1.05	1.15	4	1.5	1.5	
$K_3 = \mathrm{e}^{-\mathrm{yz}/L_h}$	V(z) <u>x(</u>	Upwind) x (Downwind) H/2 H	H/L_h	2D Ridge	K ₁ Multiplier 2D Escarpment	3D <u>Axisym</u> -	x / L _h	K ₂ Mu 2D Escarpment	All		L _h 2D Ridge	K ₂ Multipli 2D Escarpment	3D
		Lh H/2 H			Escarpment	Axisym- metrical Hill	"	Escarpment	Othe Case		" Ridge	Escarpment	metrica
	ESCAL	RPMENT	0.20	0.29	0.17	0.21	0.00	1.00	1.00	0.	00 1.00	1.00	Hill 1.00
			0.25	0.36	0.21	0.26	0.50	0.88	0.67		10 0.74	0.78	0.67
			0.30	0.43	0.26	0.32	1.00	0.75	0.33			0.61	0.45
			0.35	0.51 0.58	0.30	0.37	1.50 2.00	0.63	0.00			0.47	0.30
ASCE 7-16	24	V(z)	0.40	0.58	0.34	0.42	2.50	0.38	0.00			0.37	0.14
		Speed-up	0.50	0.72	0.43	0.53	3.00	0.25	0.00			0.22	0.09
Wind Provisions	1/(-)						3.50	0.13	0.00			0.17	0.06
	V(z) x(U)	wind) x (Downwind)					4.00	0.00	0.00			0.14	0.04
		11/2								0.		0.11	0.03
		L _h H/2 H								1.		0.08	0.02
	Nonconconconcolor									2.		0.02	0.00
	2-D RIDGE OR 3-	D AXISYMMETRICAL HILL											

ASCE | KNOWLEDGE & LEARNING

Tornado Velocity Pressure

	SC			NING	Velocity Pressure Exposure Coefficie	nt
	-1 ssure Exposure C ve Ground Level,		Kh and Kz		 K_z accounts for boundary layer effect, where wind 	speed
ft	m	В	C D		increases with increasing height above ground	
0-15	0-4.6	0.57 (0.70)) ^a 0.85 1.03			
20	6.1	0.62 (0.70)) ^a 0.90 1.08			
25	7.6	0.66 (0.70)) ^a 0.94 1.12		Rate of increase is a function of upwind terrain explanation	posure, which
30	9.1	0.70	0.98 1.16		depends on surface roughness	
40	12.2	0.76	1.04 1.22		appende en canace reagninece	
50	15.2	0.81	1.09 1.27			
60	18.0	0.85	1.13 1.31			
70	21.3	0.89	1.17 1.34			ASCE 7-16
80	24.4	0.93	1.21 1.38			
90	27.4	0.96	1.24 1.40			
100	30.5	0.99	1.26 1.43	Note		-
120	36.6	1.04	1.31 1.48	Note	5	
140	42.7	1.09	1.36 1.52	1.	The velocity pressure exposure coefficient K_z may be determined from the following	1
160	48.8	1.13	1.39 1.55		formula:	
180	54.9	1.17	1.43 1.58			
200	61.0	1.20	1.46 1.61		For 15 ft (4.6 m) $\leq z \leq z_g$ K _z = 2.01(z/z _g) ^{2/\alpha}	
250	76.2	1.28	1.53 1.68		For z < 15 ft (4.6 m) $K_z = 2.01(15/z_g)^{2/\alpha}$	
300 350	91.4	1.35	1.59 1.73		For $Z > 15$ II (4.0 III) $K_Z = 2.01(13/2g)$	
400	106.7	1.41	1.69 1.82	2.	α and z_g are tabulated in Table 26.11-1 .	
400	137.2	1.52	1.73 1.86		-	
	107.2	1.52	1.75 1.00	2	Linear interpolation for intermediate values of height z is acceptable.	

Height above	Ground Level, Z	Exposure	1.2	nges for 7-
Ft	m	В	С	D
0-15	0-4.6	$0.57 (0.70)^a$	0.85	1.03
20	6.1	$0.62 (0.70)^a$	0.90	1.08
25	7.6	$0.66 (0.70)^a$	0.94	1.12
30	9.1	0.70	0.98	1.16
40	12.2	0.76 0.74	1.04	1.22
50	15.2	0.81 0.79	1.09	1.27
60	18.0 18.3	0.85 0.83	1.13	1.31
70	21.3	0.89 0.86	1.17	1.34
80	24.4	0.93 0.90	1.21	1.38
90	27.4	0.96 0.92	1.24	1.40
100	30.5	0.99 0.95	1.26	1.43
120	36.6	1.04 1.00	1.31	1.48
140	42.7	1.09 1.04	1.36 1.34	1.52
160	48.8	1.13 1.08	1.39	1.55
180	54.9	1.17 1.11	1.43 1.41	1.58
200	61.0	1.20 1.14	1.46 1.44	1.61
250	76.2	1.28 1.21	1.53 1.51	1.68
300	91.4	1.35 1.27	1.59 1.57	1.73
350	106.7	1.41 1.33	1.64 1.62	1.78
400	121.9	1.47 1.38	1.69 1.66	1.82
450	137.2	1.52 1.42	1.73 1.70	1.86
500	152.4	1.56 1.46	1.77 1.74	1.89
Use 0.70 in C	hapter 28, Exposure B, w	/hen $z < 30$ ft (9.1 m)		
0.50 0.70 m C	impter 20, Exposure D, w	men 2 < 50 ft (5.1 ft)		

Increased gradient heights z_g and revised power law coefficient α Resulting slight revisions to K_z in lowest few hundred feet

Greater impacts for tall buildings

Final ASCE 7-22 K _z Table	
26.10-1.	

Velocity Pressure	Exposure	Coefficients,	Kh and Kz.

Table

ft	m	В	С	D
0–15	0-4.6	0.57 (0.70)*	0.85	1.03
20	6.1	0.62 (0.70)*	0.90	1.08
25	7.6	0.66 (0.70)*	0.94	1.12
30	9.1	0.70	0.98	1.16
40	12.2	0.74	1.04	1.22
50	15.2	0.79	1.09	1.27
60	18.3	0.83	1.13	1.31
70	21.3	0.86	1.17	1.34
80	24.4	0.90	1.21	1.38
90	27.4	0.92	1.24	1.40
100	30.5	0.95	1.26	1.43
120	36.6	1.00	1.31	1.48
140	42.7	1.04	1.34	1.52
160	48.8	1.08	1.39	1.55
180	54.9	1.11	1.41	1.58
200	61.0	1.14	1.44	1.61
250	76.2	1.21	1.51	1.68
300	91.4	1.27	1.57	1.73
350	106.7	1.33	1.62	1.78
400	121.9	1.38	1.66	1.82
450	137.2	1.42	1.70	1.86
500	152.4	1.46	1.74	1.89

•

29

•

•

ASCE & LEARNING Basic Wind &	Speed: Part 2		
Other changes in ASCE 7-22	Location	V (mi/h)	V (m/s)
 Modifications to special wind regions 	American Samoa	170	(76)
 PR and USVI maps in hazard tool include 	Guam & Northern Mariana Islands	210	(94)
topographic effects	Hawaii	ASCE Wind Des	0
 HI maps include topographic and directionality effects 	Puerto Rico U.S. Virgin Islands	ASCE Wind Design Geodatabase ASCE Wind Design Geodatabase	
 Some special wind regions have wind speeds available in the Hazards Tool – Colorado and So. Cal. Maps notes reordered – 5 and 8 are new 	ASCE 7	-22 Wind Sp	eed Map
Notes:			
 Values are 3 s gust wind speeds in mi/h (m/s) at 33 ft (10 m) above ground for Exp 2. Linear interpolation is permitted between contours. Point values are provided to aid v 3. Islands, coastal areas, and land boundaries outside the last contour shall use the last 4. Location-specific basic wind speeds shall be permitted to be determined using the AS 5. Wind speeds for Hawaii, US Virgin Islands, and Puerto Rico shall be determined from th 6. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examin specific values for selected special wind regions shall be permitted to be determined using f 7. Wind speeds correspond to approximately a 15% probability of exceedance in 50 year 0.000588. MRI = 1.700 years). 	with interpolation. wind speed contour. SCE Wind Design Geodatabase. he ASCE Wind Design Geodatabase. ned for unusual wind conditions. Site- the ASCE Wind Design Geodatabase.		

ASCE | KNOWLEDGE & LEARNING

Tornado Directionality Factor

- Methodology to determine K_{dT} adapted from K_d analysis for Chapter 26, incorporating the tornado model used to develop the hazard maps
- Unlike straight-line winds, the wind speeds acting on a building during a tornado can vary significantly over the building at any given instant in time, particularly for large buildings.
 - These variations in tornado speed as a function of building size are captured in the modeling process to determine K_{dT}

Structure Type	Tornado Directionality Fa KdT	Actor Wind Directionality Factor (Ch. 26) K _d
Buildings		<i>u</i>
Main Wind Force Resisting System	0.80	0.85
Components and Cladding		0.85
For Essential Facilities and for buildings and other structures required to maintain the functionality of Essential Facilities	1.0	
Roof Zone 1' as shown on Figure 30.3-2A All other cases	0.90 0.75	
Arched Roofs, Circular Domes, and All Other Structures	Use value from T 26.6-1	Table Table 26.6-1

Tornado Enclosure Classification: Part 2

32.12.2 Openings. (Continued)

Where not required by Section 32.12.3 to protect glazed openings, enclosed buildings and other structures shall either:

(1) be reevaluated for classification as partially enclosed, with all unprotected glazed openings on each assumed windward wall considered as openings; or

(2) be protected in accordance with Section 32.12.3.1.

- Wind-borne debris hazards are greater for tornadoes than for hurricanes
- The updrafts in a tornado can loft debris higher in the air, creating the opportunity for more, larger, and faster traveling debris compared to hurricanes, where debris is mainly transported horizontally
- Unprotected glazing in any building is considered as an opening for determination of Enclosure Classification (one windward wall at a time)

<image><image><image><image><image>

	EDGE Interr	nal Pressure Coef	ficient
 <i>GC</i>_{pi}, internal pressure due to wind field surror 	e coefficient, accounts unding the building	s for internal pressures	ASCE 7-16 and ASCE 7-22* Wind Provisions * Much more commentary
Table 26.13-1 In	nternal Pressure Coeffi	cient, (GCpi)	
Enclosure Classification	Internal Pressure	Internal Pressure Coefficient, (GC _{pi})	
Enclosed buildings	Moderate	+0.18 - 0.18	
Partially enclosed buildings	High	+0.55 - 0.55	
	Moderate	+0.18	
Partially open buildings		- 0.18	

ASCE | KNOWLEDGE & LEARNING STRUCTURE TYPE $K_{\nu T}$ New modifier on external pressure coefficients to Buildings account for effects of updrafts in the core of the Negative (Uplift) Pressures on Roofs tornado (vertical component of tornadic wind) Main Wind Force Resisting System 1.1 Components and Cladding • K_{vT} used to modify roof uplift pressure coefficients Roof Slope <=7 degrees that were previously developed for boundary layer Zone 1 1.2 Zone 2 1.05 winds to account for these effects Zone 3 1.05 Roof Slope > 7 degrees C_p and $(GC_p) \rightarrow K_{vT}C_p$ and $K_{vT}(GC_p)$ Zone 1 1.2 Zone 2 1.2 Zone 3 1.3 • K_{vT} > 1.0 for roof uplift coefficients (from 1.05 to 1.3) **Positive Pressures (Downward acting)** 1.0 • K_{vT} = 1.0 for downward acting roof pressure coefficients on Roofs and wall coefficients Wall Pressures 1.0 All Other Cases 1.0 78

where	
32.15 TORNADO LOADS ON BUILDINGS: MAIN W FORCE RESISTING SYSTEM 32.15.1 Enclosed, Partially Enclosed, and Partially O Buildings Section 27.3.1 shall apply for determinatio MWFRS loads for buildings of all heights, as modified ir section. Design tornado pressures, p_T , for the MWFR enclosed, partially enclosed, and partially open building all heights shall be determined in accordance with following equation, which replaces Equation (27.3-1): $p_T = qG_TK_{dT}K_{vT}C_p - q_i(GC_{piT}) (lb/fl^2)$ (32.1 $p_T = qG_TK_{dT}K_{vT}C_p - q_i(GC_{piT}) (N/m^2)$ (32.15-	TIND $q = q_{zT}$ For external pressure on all walls evaluated at height z above the ground, lb/ft^2 (N/m ²), $q = q_{hT}$ For external pressure on roofs evaluated at height h , lb/ft^2 (N/m ²), $q_i = q_{hT}$ For internal pressure evaluation of roofs of enclosed and partially open buildings, lb/ft^2 (N/m ²), $q_i = q_{zT}$ For internal pressure evaluation of the roof and and partially open buildings, lb/ft^2 (N/m ²), $q_i = q_{zop}$ For internal pressure evaluation of the roof and all walls in partially enclosed buildings, where height z_{op} is defined as the level of the lowest opening in the building that could affect the posi- tive internal pressure, lb/ft^2 (N/m ²). Glazed open-
	Section 32.13.

32.17 TORNADO LOADS: COMPONENTS AND CLADDING

32.17.1 Low-Rise Buildings Section 30.3 shall apply for determination of component and cladding tornado loads on low-rise buildings, as modified in this section. The design tornado pressures, p_T , on C&C elements in low-rise buildings and buildings with $h \le 60$ ft ($h \le 18.3$ m) shall be determined in accordance with the following equation, which replaces Equation (30.3-1):

$$p_T = q_{hT} [K_{dT} K_{vT} (GC_p) - GC_{piT}] \ (\text{lb/ft}^2) \tag{32.17-1}$$

$$p_T = q_{hT} [K_{dT} K_{vT} (GC_p) - GC_{piT}] (N/m^2)$$
 (32.17-1.SI)

where

- q_{hT} = Tornado velocity pressure from Section 32.10.2 evaluated at mean roof height *h*, lb/ft² (N/m²);
- K_{dT} = Tornado directionality factor from Section 32.6;
- K_{vT} = Tornado pressure coefficient adjustment factor from Section 32.14;
- GC_p = External pressure coefficient from Section 30.3; and
- GC_{piT} = Tornado internal pressure coefficient from Section 32.13.

ASCE | KNOWLEDGE & LEARNING

32.17.2 Buildings with h > 60 ft (h > 18.3 m) Section 30.4 shall apply for the determination of component and cladding tornado loads on buildings with h > 60 ft (h > 18.3 m), as modified in this section. The design tornado pressures, p_T , on C&C elements for all buildings with h > 60 ft (h > 18.3 m) shall be determined in accordance with the following equation, which replaces Equation (30.4-1):

$$p_T = qK_{dT}K_{vT}(GC_p) - q_i(GC_{piT}) \ (lb/ft^2)$$
 (32.17-2)

$$p_T = qK_{dT}K_{vT}(GC_p) - q_i(GC_{piT}) (N/m^2)$$
 (32.17-2.SI)

where

- $q = q_{zT}$ For external pressure on all walls evaluated at height *z* above the ground, lb/ft^2 (N/m²);
- q = For external pressures on roofs evaluated at height h, lb/ ft² (N/m²);
- $q_i = q_{hT}$ For internal pressure evaluation of roofs of enclosed and partially open buildings, lb/ft² (N/m²);
- $q_i = q_T$ For internal pressure evaluation of walls of enclosed and partially open buildings, lb/ft^2 (N/m²);
- $q_i = q_{zop}$ For internal pressure evaluation of the roof and all walls in partially enclosed buildings, where height z_{op} is defined as the level of the lowest opening in the building that could affect the positive internal pressure, lb/ft² (N/m²). Glazed openings not meeting the protection requirements of Section 32.12.3.1 shall be considered as openings; K_{dT} = Tornado directionality factor from Section 32.6;
- K_{vT} = Tornado pressure coefficient adjustment factor from Section 32.14;
- GC_p = External pressure coefficient from Section 30.4; and GC_{piT} = Tornado internal pressure coefficient from Section 32.13.

ASCE | KNOWLEDGE

Tall buildings

- Exploration of shapes
- Design pressures
- Dynamic and Crosswind loads
- Unusually shaped buildings
- Long span bridges
- Parametric studies for codification of wind loads
- Non-structural
 - Pedestrian-level winds
 - Dispersion studies

