

- Describe the rationale for how wind and tornado loads are treated in load combinations
- Determine controlling loads using Strength and ASD load combinations
- Understand current status for tornado load inclusion in model building codes and local adoptions
- This is important on the job because ...
 - Enables inclusion of tornado loads in the wind load design of a building or other structure

ASCE KNOWLEDGE & LEARNING	Load Cases
MWFRS Load Cases	 Review ASCE 7-16 Wind Cases Changes for ASCE 7-22 Wind Changes for ASCE 7-22 Tornado
	5

									Tornado	Tornado Details ×							
		OWI ARI	ledge Ning	:	O	otaiı	ning	V_T	fror	n Haz	zards ⁻		RC = IV (MRI = 3,000 years)	MRI = 10,000 years	MRI = 100,000 years	MRI = 1,000,000 years	MRI = 10,000,000 years
ASC	CE 7 HAZARD	_										Effective Plan Area (ft ²)	Tornado Speed (mph)	Tornado Speed (mph)	Tornado Speed (mph)	Tornado Speed (mph)	Tornado Speed (mph)
Location	5	tings	and	Lincol	n Tornado	Details		/ 10	WA	Des Mor	×	A _e = 1	V _T = 95	V _T = 123	V _T = 174	V _T = 220	V _T = 256
Elevation	1327 ft with respect to North American Vertical Datum of 1988 (NAVD 88)					RC = IV (MRI = 3,000	MRI = 10,000 years	MRI = 100,000 years	MRI = 1,000,000 years	MRI = 10,000,000 years	Quincy ILLING	A _e = 2,000 A _e =	V _T = 96 V _T =	V _T = 125 V _T =	V _T = 175 V _T =	V _T = 222 V _T =	V _T = 259 V _T =
Lat: Long:	97.755141 -97.368928			M		years)					N	10,000 A ₂ =	99 V _T =	128 V _T =	177 V _T =	223 V _T =	261 V _T =
Standard: Risk	ASCE/SEI 7-22	_	Salina	0	Effective Plan Area (ft ²)	Tornado Speed (mph)	Tornado Speed (mph)	Tornado Speed (mph)	Tornado Speed (mph)	Tornado Speed (mph)	and a second sec	A _e =	103 V _T =	132 V _T =	183 V _T =	226 V _T =	265 V _T =
Category: Soil Class:	Default			FLI	A _e =	V _T = 95	V _T = 123	V _T =	V _T = 220	V _T = 256	St Lo	100,000	107	136	185	230	267
Wind	Overlay	×	Oichita	/	A _e =	95 V _T =	V _T =	V _T =	220 V _T =	230 V _T =	Mark Twain	A _e = 250,000	V _T = 113	V _T = 142	V _T = 191	V _T = 234	V _T = 270
123 Vmph Tornado	DETAILS		o		2,000	96	125	175	222	259	National Forest	A _e = 1,000,000	V _T = 125	V _T = 153	V _T = 200	V _T = 241	V _T = 277
See details f	for V _T DETAILS	-			A _e = 10,000	V _T = 99	V _T = 128	V _T = 177	V _T = 223	V _T = 261		A _e = 4,000,000	V _T = 138	V _T = 164	V _T = 211	V _T = 251	V _T = 286
	REPORT SUMMARY	En	id Still	Re sei	A _e = 40,000	V _T = 103	V _T = 132	V _T = 183	V _T = 226	V _T = 265	A U Black	of the build accordanc available n	ing, other st with Section apped Ae. A	ructure, or f on 32.5.4 an siternatively,	acility, shall d shall be ro , linear interp	be determine ounded up to 1 polation of to	he next nado speed
	er the requirements of the ASCE/SEI 7 al requirements may موريد		lowa Otsa		A _e = 100,000	V _T = 107	V _T = 136	V _T = 185	V _T = 230	V _T = 267	oJon		aps using th per Section :		or the effec	tive plan area	size iS

	Design Wind	Pressure Equation (Ch 30): Part 4
$\frac{C\&C Design Wind Presse}{p = q_h K_d[(GC_p) - (GC_{pi})]}$	<u>ıre (h<60')</u>	ZONE 1 ROOF PURLIN DESIGN PRESSURES-WIND
Velocity pressure Directionality factor	q _h = 34.6 psf K _d = 0.85	Negative, (GC _p) = -0.63, (GC _{pi}) = 0.18 p = -23.8 psf
Roof pressure coefficients <i>Effective Wind Area = $25' \times 5/2' = 100000000000000000000000000000000000$</i>		Positive, (<i>GC_p</i>) = 0.3, (<i>GC_{pi}</i>) = -0.18 <i>p</i> = +14.1 <i>psf</i>
Positive (downward) Internal pressure coefficient	GC_{p}) = -0.63 = +0.3 (GC_{pi}) = 0.18, -0.18	<pre>p = +16 psf Minimum +/- 16 psf per Section 30.2.2</pre>

ASCE KNOWLEDGE Design Tornado	Pressure Equation: F	Part 2
C&C Design Tornado Pressures	STRUCTURE TYPE	$K_{\nu T}$
$p_T = q_{hT} [K_{dT} K_{vT} (GC_p) - (GC_{piT})]$	Buildings Negative (Uplift) Pressures on Roofs Main Wind Force Resisting System	1.1
Tor velocity pr (from before) q_{hT} = 22.9 psf Tor directionality factor K_{dT} = 1.0	Components and Cladding Roof Slope <=7 degrees Zone 1	1.2
Tor pr coeff adjustment factor	Zone 2 Zone 3	1.05 1.05
Negative (upward) $K_{vT} = 1.2$ Positive (downward) $= 1.0$	Roof Slope > 7 degrees Zone 1 Zone 2	1.2 1.2
Roof pressure coefficients	Zone 3	1.2
Negative (upward) $(GC_p) = -0.63$ Positive (downward) $= +0.3$	Positive Pressures (Downward acting) on Roofs	1.0
Tornado internal pressure coefficient <i>Essential Facility –enclosed</i> $(GC_{pi}) = +0.55, -0.18$	Wall Pressures All Other Cases	1.0 1.0

Model Building Codes and Cost Impacts

		OWLEDGE EARNING		Load Impacts on Studied ion, by Location and Exp				
Building Type High	Roof Construction steel roof deck,	Cities Memphis, Kansas	Exposure (Zones) B (2 & 3)	Construction Design Change Additional membrane fasteners	Compared Loads and			
School Fire	mechanically attached membrane structural standing	City DFW Memphis, Kansas	B B (all zones)	Additional membrane fasteners panel rib spacing is reduced	Impacts to Roof System			
Station	seam metal panel system	City, & DFW		paner no spacing is reduced	Design at 9 cities in the Tornado Prone Region			
Hospital	ospital steel roof deck, Me	Memphis, Kansas City, & DFW	B (all zones) B (1, 2) C (all zones) C (Zone 1)	Additional insulation board fasteners Additional foam ribbon adhesive Additional insulation board fasteners Additional foam ribbon adhesive	Minnerpolis			
	Chicago	B (Zone 1-3) B (Zone 1 & 2) C (zone 1)	Additional insulation board fasteners additional foam ribbon adhesive Additional insulation board fasteners & foam ribbon adhesive	Chicago Denver Kansas City, Washir Memphis Charlotte				
		Minneapolis	B (Zone 1-3) B (Zone 2)	Additional insulation board fasteners additional foam ribbon adhesive	Dallas			
		Charlotte	B (zone 1)	Additional insulation board fasteners & foam ribbon adhesive				
deck) or h	ospital with concrete r o impact for all other l	oof deck (adhered ro	of system).	ully adhered membrane over steel roof school, fire station or hospital with steel				

