STRUCTURAL SYSTEMS

A preparatory course assembled for the Architectural Record Examinations
 for AIA Baltimore

by Jason E. Charalambides PhD, PE, M.ASCE, AIA, ENV_SP

ESSENTIAL PARAMETERS IN STRUCTURAL DESIGN

- A Structure fails when it does not do what it is intended to do. The above happens to be good definition of unsuccessful design in general
- Fracture
- Yielding
- Buckling
- Connection failure
- Excessive displacement
- Vibration
- Causes of failure:

- Wrong estimation of loads
- Mistakes in Analysis of elements
- Connection failures
- Imprecise processes during construction phase

Some poorly designed structural forms collapse by themselves. No earthquake is necessary.

What We will discuss

- Loads (Axial \& Flexural) - Forces / Vectors \& Moments
- Tributary Areas (\& refer Portal Method)
- Overview of Code ASCE07 and IBC
- Loading and definition of Stress and Strain
- Material and Geometric qualities
- Types of Materials, Elastic vs Brittle behavior
- Modulus of Elasticity, Resilience, Toughness
- Axial Loading and Buckling
- Tensile Members
- Slender Members \& Euler's Formula
- Truss systems
- Joint \& Section Method
- Transfer of loads through structure (includes shear, bracing, trusses, connections, etc)
- Effects of geometric forms vs material
- Moment of Inertia and the concept of Stiffness
- Center of Gravity vs Center of Shear (Center of rotation)
- Types of connections
- Continuity
- Systems
- Lateral Loads
- Wind \& Earthquake
- Deflections
- Loading of Flexural Members
- Shear and integration to Moment
- Standardized formulae for Moment Calculation

LOADING

WHAT IS THE PORTAL METHOD?

SAMPLE MULTIPLE-CHOICE QUESTIONS

More Fun? OK Go Figure!


```
RISK CATEGORY 1 (FOR ACCESSORY STRUCTURES)
RISK CATEGORY 2 (FOR SINGLE FAMILY RESIDENTS)
    RISK CATEGORY 3 & 4 (HEAVY COMMERCIAL)
```


Risk Category of Buildings and other Structures

Building Risk Categories are listed in Table 1604.5 of 2010 FBC Building. (page 16.5 in code):

Let's start with some basics of Codes

- Safety Factors:

- We apply safety factors in measuring loads and in designing
- Once the loads are estimated we call them "Service loads"
- Usually we apply 1.2 to Dead Load and 1.6 to Live Load. The loads after application of safety factors are called "Design Loads"
- But we also apply a safety factors on the design of elements too. That can vary between 0.9 all the way down to 0.65 depending on the importance of the specific behavior.

SOME OF THE Specifics Of CODES

1607.9.1 General. Subject to the limitations of Sections 1607.9.1.1 through 1607.9.1.4, members for which a value of $K_{L} A_{T}$ is 400 square feet $\left(37.16 \mathrm{~m}^{2}\right)$ or more are permitted to be designed for a reduced live load in accordance with the

(Equation 16-22)
where:
$L=$ Reduced design live load per square foot (square meter) of area supported by the member.
$L_{o}=$ Unreduced design live load per square foot (square meter) of area supported by the member (see Table 1607.1).
$K_{L L}=$ Live load element factor (see Table 1607.9.1).
$A_{T}=$ Tributary area, in square feet (square meters).
L shall not be less than $0.50 L_{o}$ for members supporting one floor and L shall not be less than $0.40 L_{o}$ for members supporting two or more floors.

SOME OF THE SpeCIfics Of CODES

- Load reduction continued:
- This extends further to roof live loads.
1607.11.1 Distribution of roof loads. Where uniform roof live loads are reduced to less than $20 \mathrm{psf}\left(0.96 \mathrm{kN} / \mathrm{m}^{2}\right)$ in accordance with Section 1607.11.2.1 and are applied to the design of structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans, whichever produces the most unfavorable load effect. See Section 1607.11.2 for reductions in minimum roof live loads and Section 7.5 of ASCE 7 for partial snow loading.
1607.11.2 Reduction in roof live loads. The minimum uniformly distributed live loads of roofs and marquees, L_{o}, in Table 1607.1 are permitted to be reduced in accordance with Section 1607.11.2.1 or 1607.11.2.2.
1607.11.2.1 Flat, pitched and curved roofs. Ordinary flat, pitched and curved roofs, and awnings and canopies other than of fabric construction supported by lightweight rigid skeleton structures, are permitted to be designed for a reduced roof live load as specified in the following equations or other controlling combinations of loads in Section 1605, whichever produces the greater load.

In structures such as greenhouses, where special scaffolding is used as a work surface for workers and materials during maintenance and repair operations, a lower roof load than specified in the following equations shall not be used unless approved by the building official. Such structures shall be designed for a minimum roof live load of $12 \mathrm{psf}\left(0.58 \mathrm{kN} / \mathrm{m}^{2}\right)$.

$$
L_{r}=L_{o} R_{l} R_{2}
$$

(Equation 16-25)

For SI: $L_{r}=L_{s} R_{l} R_{2}$

where: $0.58 \leq L_{r} \leq 0.96$
$L_{r}=$ Reduced live load per square foot $\left(\mathrm{m}^{2}\right)$ of horizontal projection in pounds per square foot $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$.
The reduction factors R_{l} and R_{2} shall be determined as follows:
$R_{l}=1$ for $A_{t} \leq 200$ square feet ($18.58 \mathrm{~m}^{2}$)
(Equation 16-26)
$R_{t}=1.2-0.001 A_{t}$ for 200 square
feet $<A_{t}<600$ square feet
(Equation 16-27)
For SI: $1.2-0.011 A_{t}$ for 18.58 square meters $<A_{t}<55.74$ square meters
$R_{l}=0.6$ for $A_{t} \geq 600$ square feet
($55.74 \mathrm{~m}^{2}$)
(Equation 16-28)
where:
$A_{t}=$ Tributary area (span length multiplied by effective width) in square feet (m^{2}) supported by any structural member, and
$R_{2}=1$ for $F \leq 4$
(Equation 16-29)
$R_{2}=1.2-0.05 F$ for $4<F<12$
(Equation 16-30)
$R_{2}=0.6$ for $F \geq 12$
(Equation 16-31)
where:
$F=$ For a sloped roof, the number of inches of rise per foot (for SI: $F=0.12 \times$ slope, with slope expressed as a percentage), or for an arch or dome, the rise-to-span ratio multiplied by 32 .

And More Codes

- LRFD system
- The abbreviation stands for Load and Resistance Factor Design System developed much earlier and implemented in late 80s replacing the Allowable Stress Design (ASD) that came back again in 2005 integrated in the same AISC Steel Construction Manual.

LRFD Load Combinations

Nominal Loads

D = deal load $\mathrm{L}=$ live load $L_{R} \quad=\quad$ roof live load $\mathrm{S}=$ snow load $\mathrm{R}=$ rain load $\mathrm{W}=$ wind load E = earthquake load

1. $1.4 D$
2. $1.2 D+1.6 L+0.5\left(L_{R}\right.$ or S or $\left.R\right)$
3. $1.2 D+1.6\left(L_{R}\right.$ or S or $\left.R\right)+(0.5 L$ or $0.5 W)$
4. $1.2 D+1.0 W+0.5 L+0.5\left(L_{R}\right.$ or S or $\left.R\right)$
5. $1.2 D+1.0 E+0.5 L+0.2 S$
6. $0.9 D+1.0 W$
7. $0.9 D+1.0 E$

For simplification, in this class, combination \#2 is a default pg. 2-10 of AISC manual.

LET'S ADDRESS THE FUNDAMENTALS OF LOADS IN TERMS OF VECTORS

- Example:
- Determine the resultant force of the represented forces in the two dimensional diagram, and analyze it in components on the x and y directions:
x component $=10^{\text {lbf }} * \cos 60^{\circ}+8^{\text {bf } f} * \cos 24^{\circ}=12.31^{\text {bf }}$
y component $=10^{\text {lbf }} * \sin 60^{\circ}+8^{\text {lbf }} * \sin 24^{\circ}=11.91^{\text {lbf }}$

How are Loads Applied?

- Point Loads:
- A column will exercise a load on a specific point.
- It actually receives load from above and transfers it all to a point.

- Distributed Loads
- A floor carries dead and love loads throughout its surface. Joists pick it up and distribute it on a beam, and the beam transfers it to the columns.

13

DEAD LOADS VS LIVE LOADS

- Live loads are usually given by codes such as the IBC or the ASCE-7:
- Dead Loads are calculated
- Anything that can move easily (not just living organisms but furniture, furnishings etc are considered live load)

Weights of Common Building Materials	
Material	Load
Brick (4" - on wall)	40 psf
Curtain wall (aluminum \& glass)	$15 \mathrm{psf}(\mathrm{avg})$
Earth (Soil)	$100-130 \mathrm{pcf}$
Glass (1/4")	3.3 psf
Granite	170 pcf
Gypsum board (1/2")	1.8 psf
Hardwood floor (7/8")	2.5 psf
Heavy aggregate concrete block	83 pcf
Marble	165 pcf
Plaster (1/2")	4.5 psf
Plywood (1/2")	1.5 psf
Quarry tile (1/2")	5.8 psf
Reinforced concrete	150 pcf
Roofing (5-ply)	6 psf
Shingles (asphalt)	2 psf
Steel decking	2.5 psf
Suspended acoustical ceiling	1 psf
Terazzo 2 1/2" sand cushion	27 psf
Water	62.4 pcf
Wood @ 20\% moisture	$30-40 \mathrm{pcf}$

14

EXAMPLE

- Calculating:

- A square $9^{\text {tr}}-8^{\text {in }} \times 9^{\text {tr- }}-8^{\text {in }}$ concrete continuous slab has a thickness of 4 in and is supported by four columns at the edges. It is covered by standard hardwood floor and is part of a residential character building. Determine the load that is distributed by this slab to each of the four columns:
- Considering the tributary area for each of the columns it is fair to suggest that the depth of the slab multiplied by half the length and by half the width and then by the weight of concrete shall provide the dead load contribution of the concrete distributed to each column. \rightarrow

$$
D L_{\text {conc }}=0.333^{f t} \cdot 4.833^{f t} \cdot 4.833^{f t} \cdot 150^{p c f}=7.787^{f^{3}} \cdot 150^{p c f}=1168^{\text {lbf }}
$$

- Also, by reference to the tables, the dead load from the hardwood floor would be determined by the area multiplied by the weight per square foot.

$$
D L_{f r}=4.833^{f} \cdot 4.833^{f t} \cdot 2.5^{p c f}=58.4^{1 b f}
$$

- Producing a total Dead Load of $\underline{1226.47}^{\text {bf }}$

15

EXAMPLE

- Continuing:

- Also, the live load that can be calculated for that would be calculated in a fashion similar to that applied for the flooring. The value for the basic floor load of a residential building will be multiplied by the tributary area:

$$
L L=4.833^{f t} \cdot 4.833^{f t} \cdot 40^{p s f}=934.4^{l b f}
$$

- There are two formulae from the list given above that would be the most applicable.
- The first yields:
1.4 \cdot Dead Load $=1717^{\text {lbf }}$
- The second one yields:

1.2 Dead Load $+1.6 \cdot$ Live Load $+0.5 \cdot$ Roof Load $=1472^{\text {lbf }}+1495^{\text {lbf }}+0^{\text {lbf }}=2967^{\text {lt }}$
- Which is evidently the one that governs.

LOAD REDUCTIONS

- When we have larger areas, the live load can be reduced!
- 4.7.2 Reduction in Uniform Live Loads

Subject to the limitations of Sections 4.7 .3 through 4.7.6, members for which a value of $K_{L L} A_{T}$ is $400 \mathrm{ft}^{2}$ ($37.16 \mathrm{~m}^{2}$) or more are permitted to be designed for a reduced live load in accordance with the following formula:

$$
\begin{equation*}
L=L_{0}\left(0.25+\frac{15}{\sqrt{K_{L L} A_{T}}}\right) \tag{4.7-1}
\end{equation*}
$$

where
$L=$ reduced design live load per $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$ of area supported by the member
$L_{0}=$ unreduced design live load per $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$ of area supported by the member (see Table 4-1)
$K_{L L}=$ live load element factor (see Table 4-2)
$A_{T}=$ tributary area in $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$
L shall not be less than $0.50 L_{0}$ for members supporting one floor and L shall not be less than $0.40 L_{0}$ for members supporting two or more floors.

EXCEPTION: For structural members in oneand two-family dwellings supporting more than one floor load, the following floor live load reduction shall be permitted as an alternative to Eq. 4.7-1:

$$
L=0.7 \times\left(L_{01}+L_{02}+\ldots\right)
$$

L_{01}, L_{02}, \ldots are the unreduced floor live loads applicable to each of multiple supported story levels regardless of tributary area. The reduced floor live load effect, L, shall not be less than that produced by the effect of the largest unreduced floor live load on a given story level acting alone.

MATERIAL QUALITIES

What is Stress?

- Besides taking these ARE?
- At this point we want to focus on the axial type of stress which is given by the division of Load over Area.
- The term psi stands for pounds per square inch!
- There is also the flexural stress which is given by the Moment, multiplied by the distance from the N/A to the extreme fiber, and then divided by the Moment of Inertia.

$$
\sigma_{A}=\frac{P}{A}
$$

$$
\sigma_{B}=\frac{M \cdot c}{I}
$$

ESSENTIAL PARAMETERS FOR THE STRENGTH OF A STRUCTURAL ELEMENT

- The embedded qualities of the material
- The Young's Modulus of Elasticity
- Its Strength
- Its level of Ductility

Brittle materials Chalk, Glass, etc.

Aluminum alloys

Concrete

Rubber

- The geometric qualities of the element

Note: Between elastic limit and yield point, material deforms plastically on extremely small scale.

- The Length
- The Cross Sectional Area
- The Moment of Inertia

The Moment of Inertia

- One can argue about the radius of gyration, the Section modulus, etc, but those are included in, $r^{t} t e \sqrt{\frac{I}{A}}$
above in different ways. e.g.

EXAMPLE - STEEL

- Main advantages:
- Strength
- Homogeny
- Elasticity
- Ductility
- Speed of erection
- Defined set of forms (dimensions)
- Adaptability
- Longevity
- Simplicity
- Quality control
- Recyclability / Scrap value (Use bolts instead of welds)
- Main disadvantages:
- Corrosion
- Fireproofing
- Susceptibility to buckling
- Very strong but thin
- Fatigue
- Brittle fracture
- A rapid propagation of cracks that allows no chance for plastic deformation to happen before fracture.

MATERIAL EFFECTS THROUGH AXIAL LOADING

- Let's start with Axial Tension:
- An element in tension will experience a stress that will be equal to the
- Load over the area
- Effect on the right is after stress went through the necking region and reached fracture in axial tension

LET'S ADDRESS THE BEHAVIOR OF STEEL

- 1: Yield of Gross Area:
- This occurs when the cross sectional area of the steel member yields and deforms within its plastic region
- Let's consider a 15' long plate of A-572 steel, welded to gussets and subjected to a tensile force. It carries a thickness of $1 / 2^{\prime \prime}$ and width of 12 "

Let's Address the Behavior of Steel

- 2: Fracture of Net Area:
- This occurs when the cross sectional area of the steel member fractures between the points where bolts are located
- The element shall not fracture where there are no bolt holes. Nature always finds the easiest and most comfortable locations for solid materials to fail. They shall not fail at the second weakest point.

$$
\begin{equation*}
\varphi P_{n}=\varphi * A_{n} * F_{u} \tag{J4-2}
\end{equation*}
$$

Let's Address the Behavior of Steel

- 3: Block Shear Fracture:
- The element in tension shears along the lines of the bolts.
- It may follow a number of paths to shear.
- The 0.6 factor is applied on the Tension portion of the equation because the Fu and Fy values are determined by tension tests. The comparable terms in shear are approximately 0.6 times the tension values.
$\varphi R_{n}=\varphi *\left(0.6 * F_{u} * A_{n v}+U_{b s} * F_{u} * A_{m}\right) \leq \varphi *\left(0.6 * F_{y} * A_{g v}+U_{b s} * F_{u} * A_{n t}\right)$

STEEL IS VERY STRONG IN COMPRESSION

- Due to its high strength, Steel requires less area.
- However, a thin geometry together with compressive loads may cause the effect that we call buckling
- Due to time limitations let's not engage into the details of the mechanics, but we can at least mention that there are methods to alleviate this issue
- Bracing reduces the "slenderness" and is one method to solve this problem

26

EULER'S BUCKLING PRINCIPLE

- Euler's elastic buckling:
- The buckled shape resembles $1 / 2$ a sinusoidal distribution.
- The buckling load Pe is proportional to the Moment of Inertia of the element
- Buckling is proportional to the Young's modulus of elasticity (E) but independent of the yield strength of the material (Fy)
- The buckling load is inversely proportional to the square value of the length of the element $\left(L^{2}\right)$
- The longer the element the more susceptible to buckling

27

EULER'S BUCKLING PRINCIPLE

- Euler's elastic buckling:
- The buckled shape resembles $1 / 2$ a sinusoidal distribution.
- The buckling load Pe is proportional to the Moment of Inertia of the element
- Buckling is proportional to the Young's modulus of elasticity (E) but independent of the yield strength of the material (Fy)
- The buckling load is inversely proportional to the square value of the length of the element $\left(L^{2}\right)$
- The longer the element the more susceptible to buckling

Euler's Buckling principle in Stress

- Load divided by Area will give us...
- A lot of stress!
- Not really a lot but it will give us the stress.
- But there's another factor that is very important to note here. It is the Slenderness ratio of the column (λ)
- The greatest reductions in strength are noticed in columns that have a "Slenderness ratio" between the values of $70-90$.
" But there is also the " K " factor that we did not talk about.

$$
F_{E}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}
$$

Buckled shape of column is shown by dashed line	$\begin{array}{\|c} \hline(8) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$			$\sqrt{(0)}$		${ }^{+}$
eoreical k alue	0.5	0.7	1.0	1.0	2	
Recommended design value when ideal con- ditions are approxi-	0.85	0.80	1.0	1.2	2.	
End condition code			Sontixed			

HOW GEOMETRY AFFECTS STRUCTURAL STRENGTH

- Here we see four sections of very similar cross sectional areas.
- From left to right we see better forms for axial design to better forms for flexural design.
- Check the moment of inertia for each one.

HSS 8.625X0. 322
$I=68.1$
WE IGHT $=28.58$

HSS $8 \times 8 \times 5 / 16$
$I=86.6$
WEIGHT $=31.84$

W8X31
$\mathrm{I}=110$
$I(Y)=37.1$

W14X30
$I=291$
$I(Y)=19.6$

How GeOMETRY AFFECTS STRUCTURAL STRENGTH

- Here are some basic differences:
- An element that is efficient in flexural loads would have:

$$
d \gg b_{f} \quad r_{x} \gg r_{y}
$$

- An element that is efficient in axial loads would have:

$$
d \approx b_{f} \quad \frac{r_{x}}{r_{y}} \approx 1.6 \text { to } 3
$$

HSS
8.625×0.322
$I=68.1$
WEIGHT $=28.58$

HSS $8 \times 8 \times 5 / 16$
$I=86.6$
WEIGHT $=31.84$

W8X31
$I=110$
$I(Y)=37.1$

W14X30
$I=291$
$I(Y)=19.6$

HOW GEOMETRY AFFECTS STRUCTURAL STRENGTH

- For the HSS shape @ $F_{y}=42^{\text {ksi }}, L_{u}=15^{\prime}$:

$$
\frac{I_{x}}{I_{y}}=1 \quad r_{x}=r_{y}=2.95
$$

$$
\Phi P n=\underline{236 \mathrm{kip}}
$$

- For the $W 14 \times 30 @ F_{y}=50^{k s i}, L_{u}=15^{\prime}$:

HSS 8.625 X0. 322
$I=68.1$
WE IGHT $=28.58$

$$
\frac{I_{x}}{I_{y}}=14.85 \quad \frac{r_{x}}{r_{y}} \approx 5.5 \quad r_{y}=1.49
$$

$\Phi P n=$ not even listed within Table 4-1 of the AISC. Using Table 4-22

$$
\begin{array}{ll}
\frac{K L}{r}=\frac{1 * 15 * 12}{1.49}=120.8 & \Phi P_{n}=\Phi * A_{g} * F_{c r} \quad \Phi * F_{c r} \quad \text { from table } \approx 15.5^{k s i} \\
A_{g}=8.85^{\text {inches }} & \Phi P_{n} \approx 15.5^{k s i} * 8.85^{\text {inches }} \approx 137 \mathrm{kip}
\end{array}
$$

TRUSSES
 A DIRECT APPLICATION OF AXIAL LOADING!

- A Truss is a special structure that transfers loads only axially
- Loads may be applied along the outer elements, but the nodes pick those loads.
- Elements may deflect a little, and as they deflect slightly the load is transferred axially through the nodes

ANALYZING TRUSSES

- There are two basic methods to analyze, and design the members of a truss:
- The method of joints involves the listing of all equations of equilibrium, proceeding joint by joint.
- Each joint of a 2D (plane) truss yields two equilibrium equations $\Sigma \mathrm{Fx}=0$ and $\Sigma \mathrm{Fy}=0$, where x and y are two mutually perpendicular
 axes in the plane.
- On the other hand, the number of unknown quantities for the plane
$A=\operatorname{Atan} \frac{8}{5}=58 \mathrm{deg}$ truss is the number of external reactions plus the number of member forces.

ANALYZING TRUSSES

Solution For the truss shown above, $R=3, M=13$, and $J=8$. Thus, we have $R+M=$ $16=2 J$. The truss is statically determinate.

Prior to solving for member forces, we need to solve for the external reactions. As long as there are no more than three external reactions, the truss is externally statically determinate.

$$
\begin{aligned}
\sum F_{x} & =A_{x}+5=0 \Rightarrow A_{x}=-5 \\
\sum F_{y} & =A_{y}-10+E_{y}=0 \Rightarrow A_{y}+E_{y}=10 \\
\sum M_{A} & =-(10 \times 10)-(8 \times 5)+\left(20 \times E_{y}\right)=0 \Rightarrow E_{y}=7 \\
\therefore \quad A_{y} & =10-E_{y}=3
\end{aligned}
$$

ANALYZING TRUSSES

- Joint Method:
- The method of Joints, ...and
- The method of Sections!

ANALYZING TRUSSES

- Section Method:

- In order to apply the method of sections, we want to cut the structure with a section, thus dividing it into two parts. At the location of the cut, we replace each cut member with the member force (which is still unknown). As in the method of joints, we will insert these unknown forces as tension forces to begin with. The algebraic sign of the force, once solved, will tell us whether the actual internal force is tensile or compressive.
- There are some rules for choosing a valid section or cut. For a "cut" to be valid-such that the substructures are solvable -one must follow certain rules in choosing the orientation of the cut, i.e., which members it passes through

ANALYZING TRUSSES

- Section Method:

- 1. The "cut" or section must separate the structure into two parts.
- 2. The "cut" must not pass through more than three unknown members (i.e., whose internal forces are unknown).
- The substructure is governed by the three equations of static equilibrium. Thus, any more than three unknowns will lead to an unsolvable system.

- Exception: In some situations, there is no single section that meets criteria 1 and 2 . In those cases, it may be necessary to make two successive sections, producing a system of six simultaneous equations in six unknown member forces.

ANALYZING TRUSSES

- Section Method:

- 3.The unknown forces must not be concurrent. If these forces all pass through a common point, the problem will reduce to equilibrium of that point-producing two equations of equilibrium $\Sigma F x=0$ and $\Sigma F y=0$.
- The equation $\Sigma \mathrm{M}=0$ will be satisfied identically ($0=0$) and will not yield any useful information.

ANALYZING TRUSSES

The diagram indicates the dimensions and the forces applied on a Pratt Truss. All elements are made of 60 Grade steel.

- Calculate the loads that correspond to each of the elements.
- Determine the dimensions of the critical element if it should have a square cross section.

- Determine the dimensions of the critical element if it has to be cylindrical.

Solution:

a) Analyzing the geometry and the forces in the truss using the joint method:

By taking sums of moments and sums of forces we can determine the reactions:
$\mathrm{F}_{\mathrm{Ey}}:=\frac{22 \text { kip } \cdot 30 \mathrm{ft}-10 \text { kip } \cdot 8 \mathrm{ft}}{40 \mathrm{ft}}$
$\mathrm{F}_{\mathrm{Ey}}=14.5 \cdot \mathrm{kip}$
$\mathrm{F}_{\mathrm{Ex}}:=10 \mathrm{kip}$
$\mathrm{F}_{\mathrm{Ex}}=10 \cdot \mathrm{kip}$
$\mathrm{L}_{\mathrm{BF}}:=4 \mathrm{ft}$
$\mathrm{L}_{\mathrm{DH}}:=4 \mathrm{ft}$
$\mathrm{F}_{\mathrm{Ay}}:=22 \mathrm{kip}-\mathrm{F}_{\mathrm{Ey}}$

$$
\mathrm{F}_{\mathrm{Ay}}=7.5 \cdot \mathrm{kip}
$$

Solving for the geometry:
$\mathrm{L}_{\mathrm{AG}}:=\sqrt{\mathrm{L}_{\mathrm{AC}}{ }^{2}+\mathrm{L}_{\mathrm{CG}}{ }^{2}} \quad \mathrm{~L}_{\mathrm{AG}}=21.54 \mathrm{ft}$

$$
\text { Angle }_{\mathrm{BAF}}:=\operatorname{asin}\left(\frac{\mathrm{L}_{\mathrm{CG}}}{\mathrm{~L}_{\mathrm{AG}}}\right) \quad \text { Angle }_{\mathrm{BAF}}=21.8 \cdot \mathrm{deg}
$$

ANALYZING TRUSSES

By observation:
 $\mathrm{L}_{\mathrm{AF}}:=\frac{\mathrm{L}_{\mathrm{AG}}}{2}=10.77 \mathrm{ft}$
 $\mathrm{L}_{\mathrm{HE}}:=\mathrm{L}_{\mathrm{AF}}=10.77 \mathrm{ft}$
 $\mathrm{L}_{\mathrm{FG}}:=\mathrm{L}_{\mathrm{AF}}=10.77 \mathrm{ft} \quad \mathrm{L}_{\mathrm{GH}}:=\mathrm{L}_{\mathrm{AF}}=10.77 \mathrm{ft}$
 Angle $_{\mathrm{DEH}}:=$ Angle $_{\mathrm{BAF}}=21.801 \cdot \mathrm{deg}$

Solving for remaining geometry:

$$
\mathrm{L}_{\mathrm{BG}}:=\sqrt{\mathrm{L}_{\mathrm{BC}}{ }^{2}+\mathrm{L}_{\mathrm{CG}}{ }^{2}} \quad \quad \mathrm{~L}_{\mathrm{BG}}=12.81 \mathrm{ft} \quad \text { Angle }{ }_{\mathrm{CBG}}:=\operatorname{asin}\left(\frac{\mathrm{L}_{\mathrm{CG}}}{\mathrm{~L}_{\mathrm{BG}}}\right)
$$

$$
\text { Angle }_{\mathrm{CBG}}=38.66 \cdot \mathrm{deg}
$$

Solving for forces FHE and FDE:

By considering that the sum of vertical forces should be equal to 0 , and using compression as -ve and tension as +ve...

| $\mathrm{F}_{\mathrm{HEy}}:=\mathrm{F}_{\mathrm{Ey}}$ | $\mathrm{F}_{\mathrm{HEy}}=14.5 \cdot \mathrm{kip}$ | $\mathrm{F}_{\mathrm{HE}}:=\frac{\mathrm{F}_{\mathrm{HEy}}}{\sin (\text { Angle } \mathrm{DEH})}$ | $\mathrm{F}_{\mathrm{HE}}=39.04 \cdot \mathrm{kip}$ |
| :--- | :--- | :--- | :--- |\quad Compression

Continuing with junction H (rotate it 21.6 degrees counterclockwise to your visual aid):
If we take the component of that 22 kip load that is perpendicular to $G E$, that would be equalized only by a component reaction by DH. Therefore, the force on DH will be equal to the 22 kip load.

$\mathrm{F}_{\mathrm{DH}}:=18 \mathrm{kip} \quad$ Compression

Similarly, if we take elements GH and HE we can see that they take identical loads
$\mathrm{F}_{\mathrm{GH}}:=\mathrm{F}_{\mathrm{HE}} \quad \mathrm{F}_{\mathrm{GH}}=39.04$-kip Compression
Proof through the use of the Section Method: $\quad\left(8 \mathrm{ft} \cdot \mathrm{F}_{\mathrm{GH}} \cdot \cos \left(\right.\right.$ Angle $\left.\left._{\mathrm{BAF}}\right)\right)+20 \mathrm{ft} \cdot \mathrm{F}_{\mathrm{GH}} \cdot \sin ($ Angle BAF$)-30 \mathrm{ft} \cdot 22 \mathrm{kip}+8 \mathrm{ft} \cdot 10 \mathrm{kip}=0 \cdot \mathrm{k}^{\prime}$

ANALYZING TRUSSES

Taking junction D :
$\mathrm{F}_{\mathrm{GD}}:=\frac{\mathrm{F}_{\mathrm{DH}}}{\sin \left(\text { Angle }_{\mathrm{CBG}}\right)} \quad \mathrm{F}_{\mathrm{GD}}=28.81 \cdot \mathrm{kip}$ Tension $\quad \mathrm{F}_{\mathrm{CD}}:=\mathrm{F}_{\mathrm{DE}}-\mathrm{F}_{\mathrm{GD}} \cdot \cos \left(\right.$ Angle $\left.{ }_{\mathrm{CBG}}\right) \quad \mathrm{F}_{\mathrm{CD}}=13.75 \cdot \mathrm{kip} \quad$ Tension
Junction C may be omitted as element GC is taking no loads and evidently element BC is taking a load equal to that of element CD.

$\mathrm{F}_{\mathrm{BC}}:=\mathrm{F}_{\mathrm{CD}}=13.75$-kip Tension

An easy joint to solve for is joint A :
$\mathrm{F}_{\mathrm{AFy}}:=\mathrm{F}_{\mathrm{Ay}} \quad \mathrm{F}_{\mathrm{AFy}}=7.5 \cdot \mathrm{kip} \quad \mathrm{F}_{\mathrm{AF}}:=\frac{\mathrm{F}_{\mathrm{AFy}}}{\sin \left(\mathrm{Angle}_{\mathrm{DEH}}\right)} \quad \mathrm{F}_{\mathrm{AF}}=20.19 \cdot \mathrm{kip}$
$\mathrm{F}_{\mathrm{AB}}:=\mathrm{F}_{\mathrm{AF}} \cdot \cos \left(\right.$ Angle $\left._{\mathrm{DEH}}\right) \quad \mathrm{F}_{\mathrm{AB}}=18.75 \cdot \mathrm{kip}$

The above signifies that elements BF and BG take no load. Element BF would take equal vertical load to element BG. However, element $B G$ has a horizontal component. There is no room for a horizontal component at this point on joint B because $F A B=F B C$. So the only value that would be a possible as horizontal contribution by element BG to that joint is 0 ! Proof through section method:
$22 \mathrm{kip} \cdot 10 \mathrm{ft}+10 \mathrm{kip} \cdot 8 \mathrm{ft}-8 \mathrm{ftF} \mathrm{AF}^{\prime} \cdot \cos \left(\right.$ Angle $\left._{\mathrm{BAF}}\right)-20 \mathrm{ft} \cdot \mathrm{F}_{\mathrm{AF}} \cdot \sin \left(\right.$ Angle $\left._{\mathrm{BAF}}\right)=0 \cdot \mathrm{k}^{\prime}$
$\mathrm{F}_{\mathrm{AB}}=18.75 \cdot \mathrm{kip} \quad \mathrm{F}_{\mathrm{AF}}=20.19 \cdot \mathrm{kip} \quad \mathrm{F}_{\mathrm{DH}}=18 \cdot \mathrm{kip} \quad \mathrm{F}_{\mathrm{GD}}=28.81 \cdot \mathrm{kip} \quad \mathrm{F}_{\mathrm{DE}}=36.25 \cdot \mathrm{kip} \quad \mathrm{F}_{\mathrm{HE}}=39.04 \cdot \mathrm{kip} \quad \mathrm{F}_{\mathrm{CD}}=13.75 \cdot \mathrm{kip}$
$\mathrm{F}_{\mathrm{BC}}=13.75$.kip $\quad \mathrm{F}_{\mathrm{FG}}:=\mathrm{F}_{\mathrm{AF}}=20.19$.kip $\quad \mathrm{F}_{\mathrm{CG}}:=0$ kip $\quad \mathrm{F}_{\mathrm{BG}}:=0$ kip $\quad \mathrm{F}_{\mathrm{BF}}:=0$ kip $\quad \mathrm{F}_{\mathrm{GH}}=39.04$.kip

ANALYZING TRUSSES

b) Determining the dimensions the critical element should have based on Euler's formula if the element has a square cross section:

It so happens that the element with the highest load is also the longest element in the truss, and that is "GD". BG has the same length but is subject to no load. However, element "GD" is under tension, so buckling is not an issue for that element.
Therefore, the issue is shifted to elements "GH" and "HE".
$L_{D H}=4 \mathrm{ft} \quad \mathrm{L}_{\mathrm{AF}}=10.77 \mathrm{ft} \quad \mathrm{E}:=29000 \mathrm{ksi} \quad \mathrm{P}_{\mathrm{crit}}=\frac{\pi^{2} \cdot \mathrm{E} \cdot \mathrm{I}}{\left(\mathrm{K} \cdot \mathrm{L}_{\mathrm{u}}\right)^{2}}$
By considering that the element will be of square cross section we can define that the moment of inertia will be:
$\mathrm{I}=\frac{\mathrm{bh}}{}{ }^{3}{ }^{3}$ or $\mathrm{I}=\frac{\mathrm{b}^{4}}{12}$ Substituting to Euler's formula and solving for the dimension " b ":
The factor K has beeen removed as it takes a value of "1"

$$
\mathrm{b}=\left(\frac{12 \cdot \mathrm{~K}^{2} \cdot \mathrm{~L}_{\mathrm{u}}{ }^{2} \cdot \mathrm{P}_{\text {crit }}}{\pi^{2} \cdot \mathrm{E}}\right)^{\frac{1}{4}}
$$

$\mathrm{b}_{\mathrm{HE}}:=\left(\frac{12 \cdot \mathrm{~L}_{\mathrm{HE}}{ }^{2} \cdot \mathrm{~F}_{\mathrm{HE}}}{\pi^{2} \cdot \mathrm{E}}\right)^{\frac{1}{4}} \quad \mathrm{~b}_{\mathrm{HE}}=2.29 \cdot \mathrm{in}$

$$
\text { Area }:=\mathrm{b}_{\mathrm{HE}}{ }^{2}=5.229 \cdot \mathrm{in}^{2}
$$

ANALYZING TRUSSES

c) Determining the dimensions the critical element should have based on Euler's formula if the element has a round cross section:
$\mathrm{I}=\frac{\pi \cdot \mathrm{r}^{4}}{4} \ldots$ Substituting $\ldots \quad \mathrm{r}=\left(\frac{48 \cdot \mathrm{I}_{\mathrm{u}}{ }^{2} \cdot \mathrm{P}_{\mathrm{crit}}}{\pi^{3} \cdot \mathrm{E}}\right)^{\frac{1}{4}} \quad \mathrm{Dia}_{\mathrm{HE}}:=2\left(\frac{4 \cdot \mathrm{~L}_{\mathrm{HE}}{ }^{2} \cdot \mathrm{~F}_{\mathrm{HE}}}{\pi^{3} \cdot \mathrm{E}}\right)^{\frac{1}{4}} \quad \mathrm{Dia}_{\mathrm{HE}}=2.61 \cdot \mathrm{in} \quad$ Area $:=\pi\left(\frac{\left(\frac{\mathrm{Dia}}{\mathrm{HE}}\right.}{2}\right)^{2}=5.351 \cdot \mathrm{in}^{2}$

BENDING THEORY

Bending Theory

HOW GEOMETRY AFFECTS STRUCTURAL STRENGTH

- Which of the options on the right would you pick to double the size of a wooden beam?
- Option A doubles the cross sectional area of the beam.
- Option B also does that.
- But the resistance the beam will develop depends on its Moment of Inertia:

- Formula for "l" (Moment of Inertia):
$I=\frac{b * h^{3}}{12}+A \cdot d^{2}$ The $A^{*} d^{2}$ component of the equation is applicable to
- Formula for " f_{b} " or " σ_{b} " flexural stress
$f_{b}=\frac{M * c}{I}$ parts that are not centered or to asymmetrical elements.

Where " M " is the Moment, and " c " is the distance between the Neutral Axis and the extreme fiber.

- Option B has a larger "h" which is raised to the $3^{\text {rd }}$ power!

MATERIAL BEHAVIOR AND MECHANICS

- Take an infinitesimally small rectangular portion of this member and analyze the stresses developed:
- The resultant will cause a diagonal tension.
- Perpendicular to that diagonal will be the crack caused.
- But what if the structural element is stronger on one side and weaker on the other.
" Failure will occur "along the grain" not "against the grain" (see next slides)

Material Behavior and Mechanics

- More specifically, the diagram below indicates the Tensile trajectories and the directions that cracks would occur due to shear in a beam

49

Material Behavior and Mechanics

Wood will shear more longitudinally along the weak direction of the fibers. The effect of transversal shear will be limited.

SHEAR TO MOMENT

- There are standard formulae that can give us the critical shear and moment of most loaded beam configurations, but there are occasions where the location of loads does not help to use these standard formulae:

$$
\begin{aligned}
& M_{u}=\frac{w \cdot L^{2}}{8} \\
& M_{u}=\frac{P \cdot L}{4}
\end{aligned}
$$

- In those cases, the designer has to produce a Shear diagram and then a Moment diagram to find the critical shear and moment values

Standardized Load Configurations

Standardized Load Configurations

11. SIMPLE BEAM - TWO UNEQUAL CONCENTRATED LOADS

12. BEAM FIXED AT ONE END, SUPPORTED AT OTHERUNIFORMLY DISTRIBUTED LOAD

EXERCISE

A wooden beam spanning 20^{\prime} is designed with two 2×8 and a 2×4 elements as shown in the figure.

- Calculate the moment of inertia of the designed beam.
- If the wood can take a maximum stress of $1^{\text {ki }}$ what would be the maximum uniformly distributed load that can be applied on this designed element?

1) Calculating the moment of inertia of the element:
a) Starting by calculating the center of gravity of the composed element:

Taking the bottom extreme fiber as reference:
$\mathrm{C}_{\mathrm{g}}:=\frac{\left[0.5 \cdot \mathrm{~W}_{24} \cdot\left(\mathrm{~A}_{24}\right)\right]+\left[\left(\mathrm{w}_{24}+0.5 \cdot \mathrm{~L}_{28}\right) \cdot\left(\mathrm{A}_{28}\right)\right]+\left[\left(\mathrm{w}_{24}+\mathrm{L}_{28}+0.5 \cdot \mathrm{~W}_{28}\right) \cdot\left(\mathrm{A}_{28}\right)\right]}{2\left(\mathrm{~A}_{28}\right)+\left(\mathrm{A}_{24}\right)}$
$\mathrm{C}_{\mathrm{g}}=6.04 \cdot \mathrm{in}$

EXERCISE

b) Calculating the moment of inertia of each individual portion:

$$
\begin{aligned}
& \mathrm{d}_{1}:=\left|\mathrm{C}_{\mathrm{g}}-\frac{\mathrm{w}_{24}}{2}\right| \\
& \mathrm{d}_{1}=5.29 \cdot \mathrm{in} \\
& \mathrm{I}_{1}:=\frac{\mathrm{L}_{24} \cdot \mathrm{~W}_{24}{ }^{3}}{12}+\mathrm{A}_{24} \cdot \mathrm{~d}_{1}{ }^{2} \\
& \mathrm{I}_{2}:=\frac{\mathrm{W}_{28} \cdot \mathrm{~L}_{28}{ }^{3}}{12}+\mathrm{A}_{28} \cdot \mathrm{~d}_{2}{ }^{2} \quad \mathrm{I}_{2}=56.67 \cdot \mathrm{in}^{4} \\
& \mathrm{~d}_{3}:=\left|\mathrm{C}_{\mathrm{g}}-\left(\frac{\mathrm{w}_{28}}{2}+\mathrm{L}_{28}+\mathrm{W}_{24}\right)\right| \mathrm{d}_{3}=3.46 \cdot \text { in } \\
& \mathrm{I}_{3}:=\frac{\mathrm{L}_{28} \cdot \mathrm{~W}_{28}{ }^{3}}{12}+\mathrm{A}_{28} \cdot \mathrm{~d}_{3}{ }^{2} \quad \mathrm{I}_{3}=132.5 \cdot \mathrm{in}^{4} \\
& \mathrm{I}_{\text {tot }}:=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3} \\
& I_{\text {tot }}=336.87 \cdot \mathrm{in}^{4} \\
& I_{1}=147.7 \cdot \text { in }^{4} \\
& \mathrm{~d}_{2}:=\left|\mathrm{C}_{\mathrm{g}}-\left(\frac{\mathrm{L}_{28}}{2}+\mathrm{w}_{24}\right)\right| \\
& \mathrm{d}_{2}=0.91 \cdot \text { in } \\
& \mathrm{I}_{\text {tot }}:=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
\end{aligned}
$$

EXERCISE

2) Calculating the maximum moment to be lead to the maximum uniformly distributed load:

Note: The formula for stress contains the moment and the distance " c " of the extreme fiber to N/A on the numerator. This beam is not symmetrical along the x-axis. The distance " c " on top is shorter than the distance " c " on the bottom. Therefore, the bottom will experience higher stress at any value of applied moment. The bottom fiber will fail first. Therefore it is the distance " c " on the bottom that needs to be used. That distance " c " happens to be the distance calculated above as Cg for center of gravity since the N/A is at the center of gravity of the composed element.

$$
\mathrm{f}_{\mathrm{b}}=\frac{\mathrm{M} \cdot \mathrm{c}}{\mathrm{I}} \quad \mathrm{c}:=\mathrm{C}_{\mathrm{g}} \quad \mathrm{M}:=\frac{\mathrm{f}_{\mathrm{b}} \cdot \mathrm{I}_{\mathrm{tot}}}{\mathrm{c}} \quad \mathrm{M}=4.65 \cdot \mathrm{k}^{\prime}
$$

3) Calculating the applied load:
$\mathrm{M}=\frac{\mathrm{w} \cdot \mathrm{L}^{2}}{8} \quad \mathrm{w}:=\frac{8 \cdot \mathrm{M}}{\mathrm{L}_{\mathrm{b}}{ }^{2}} \quad \mathrm{w}=93.01 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}}$

SHEAR TO MOMENT

-Example:

Construct a shear diagram for the following load distribution diagram:

Beam's Length
$L_{\text {beam }}:=20 \mathrm{ft}$
Support Locations:
$\mathrm{x}_{\mathrm{RA}}:=3 \mathrm{ft} \quad \mathrm{x}_{\mathrm{RB}}=16 \mathrm{ft}$
Other UDLs:

$$
\mathrm{w}_{1}:=1.4 \frac{\mathrm{kip}}{\mathrm{ft}} \quad \mathrm{w}_{2}:=0 \frac{\mathrm{kip}}{\mathrm{ft}}
$$

Beginning and end locations of uniformly distributed loads:
$\mathrm{x}_{\mathrm{Lw} 1}:=4 \mathrm{f}_{\mathrm{Rw} 1}:=20 \mathrm{ft}$
$x_{\text {Lw2 }}:=0 \mathrm{x}_{\mathrm{Rw} 2}:=0 \mathrm{ft}$

$\begin{aligned} & \text { Resultant locations of } \\ & \text { uniformly distributed loads: }\end{aligned} \quad \operatorname{Res}_{w 1}:=x_{L w 1}+\frac{x_{R w 1}-x_{L w 1}}{2} \operatorname{Res}_{w 1}=12 \mathrm{ft}$
$\operatorname{Res}_{w 2}:=x_{L w 2}+\frac{x_{R w 2}-x_{L w 2}}{2} \operatorname{Res}_{w 2}=0$

SHEAR TO MOMENT

SHEAR TO MOMENT

Deflection - Double integral of MOMENT

- The deflection of a flexural beam
- We have seen that the Moment diagram is the integral of the Shear diagram.
- The Moment diagram is not something that we can observe by visually observing a flexural member. However, what is visually evident is the deflection that it is subjected to.
- The actual relation of that physical effect can be produced through the double integration of the Moment Diagram.

- The deflection of a flexural beam
- Similar to the case of the simply supported beam with a point load in the middle, here we see the results of integration at all levels with a simply supported beam with uniformly distributed load.
- These are very specific formulae but can be used in most situations, especially this scenario. However, it is quite probable to see them combined and/or adjusted according to the specificity of the design.

61

Limits of Deflection

- Deflection can be a failure
- Granted the redundant statement that "if a Structure fails to do what it is supposed to do, it fails" the principle is applicable to deflection as well.
- Some deflection should be anticipated, but there are limits given by codes that should not be surpassed:
- The table gives the limits according to the American Concrete Institute Code 318-14/Table 24.2.2:

Member	Condition	Deflection to be Considered	Limitation	
Flat Roofs	Not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to max L_{r}, S, or R	L/180	
	Immediate deflection due to L	L/360		
Floors	Roofs and Floors	Supporting or attached to non structural elements	Likely to be damaged by large deflections	That part of the total deflection occurring after attachment of nonstructural elements, which is the sum of the time-dependent deflection due to all sustained loads and immediate deflection due to any additional live load
		Not likely to be damaged by large deflections	L/480	
			L/240	

LATERAL LOADS

SOME HINTS ON LATERAL LOADS

- These are just random hints pertaining to Lateral Loads for the ARE

- Historic Buildings may need to be retrofitted to withstand seismic and wind loads because they were likely not designed for them initially
- Wood connections have a special factor of safety (1.6) added to address lateral loads
- It is unnecessary to design for Wind and Seismic loads as if they would act concurrently
- Wind may cause substantial uplift to structures that may put elements such as columns that were in compression act in tension to hold the roof that uplifts
- Negative pressure often governs over positive pressure. It is safer to design all openings for the higher value rather than anticipate that wind will always have the same direction
- Smooth terrain produces laminar wind flow, whereas uneven/rough terrain generates turbulence
- Most of the US receives a high wind value of 90^{mph}. Coastlines are much more prone to have higher wind values
- Drift occurs due to both wind and earthquake. Drift should not exceed 0.002 x building height
- Window Design Pressure (DP) needs to be determined for every project according to location so that windows will have withstand the anticipated pressures
- Although there is a lot of hype about it, rain does not increase wind load dramatically

SEISMIC LOADS

ON LATERAL LOADS

- The effect of lateral loads depends upon the rotation that the force may generate:
- Consider that you have a location where the resultant force is going to be applied,
- And then consider that there will be a point that will remain stable.
- That second point will be acting in a fashion similar to a hinge of a door.
- The force acting on the center of mass will cause a torsional effect and the building will be rotating!

ON LATERAL LOADS

- Determining the center of gravity of a simple structure:
- A problem like this will very likely be on the exam. However, the exam does not offer much time to go much deeper than this basic level.
- Let's determine the center of Gravity of this along the x axis!
- Disregard the indicated wind load on the y axis. This is a graphic that was used for a
 different and more advanced problem.

$$
G_{c_{s}}=\frac{\sum R \cdot d}{\sum R}=\frac{4 \mathrm{R} \cdot 0^{f t}+3 \mathrm{R} \cdot 120^{f t}+3 \mathrm{R} \cdot 160^{f t}}{4 \mathrm{R}+3 \mathrm{R}+3 \mathrm{R}}=64.62^{f t}
$$

PROBLEMS WITH PLAN ECCENTRICITY

- The effect of lateral loads depends upon the rotation that the force may generate:
- Plan eccentricity increases
deformation demand on elements far from center of rigidity

Center of Rigidity

Center of Mass

LESSON LEARNT FROM PERU

- Photo, courtesy of Dr. R.

Klingner:

- The Embassy Hotel at Pisco Peru. A corner building.
- Results of moment generated due to the distance of Center of gravity (mass) and center of shear (rigidity).

How Geometry Effects Behavior

- Center of Gravity vs Center of Shear:

- Try to visualize a channel (C Section) spanning horizontally with the web vertical (flanges horizontal) that is subject to a uniformly distributed or a point load.
- How do you envision the deflection of that element?

How Geometry Effects Behavior

- Center of Gravity vs Center of Shear:

- Compare where the center of gravity is located with respect to the center of shear (also known as center of rotation or center of rigidity)
- The distance between the point that receives the resultant force (Center of mass or Center of gravity) and the center of shear constitutes a moment-arm that will generate a rotation.

$$
\begin{aligned}
& C_{G}=\frac{(t-2 \mathrm{~b})^{2}}{2 \cdot(2 b+h)} \\
& e c c=\frac{3 \mathrm{t}_{f} b^{2}}{h \cdot t_{w}+6 \mathrm{~b} \cdot t_{f}}
\end{aligned}
$$

LATERAL STRENGTH

- I don't believe that there will be anything that complex in the exam. You certainly do not have the time to do this!

EARTHQUAKE BASICS

- What are Earthquakes?

- Movement of soil caused by shifting of tectonic plates.
- Every material (including rocks and soil) have a certain elasticity and plasticity. Once it is surpassed an effect similar to that of fracture comes to the forefront!
- The potential energy that is stored in the system will be released to kinetic energy, resulting in movement of the soil, liquefaction, and after effects such as tsunami, landslides, fires etc.

Rocks rebound to original undeformed shape

EARTHQUAKE BASICS

- The geometry of Earthquakes?

" The "Focus" of the Earthquake is the point beneath the surface where the failure begins. You can see that as the actual "center" of the earthquake
" The "epi-center" (which means point above the center) is the location directly above, on the surface of the earth that we shall likely experience the maximum energy emitted by the quake.

EARTHOUAKE BASICS

- The Earthquakes Waves

- Earthquakes propagate in the form of waves. Those waves are the response of material substance to the energy fronts that were released after the effect that we consider as rupture (the point beyond the plastic region where materials break apart)
- There are two types of waves:
- Body waves - P(rimary) \& S(econdary)
- Surface Waves - R(eileigh) \& L(ove)

Earthouake Wave Propagation

" The P \& S waves are "Body waves"

- P or primary waves
- They are faster waves
- They travel through solids, liquids, or gases (compressional wave action),
- Material movement is in the same direction as wave movement
- S or secondary waves
- They are slower than P waves
- They travel through solids only
- They are shear waves - move material perpendicular to wave movement

76

Earthouake Wave Propagation

- The R \& L waves are "Surface waves"
- Both types of Surface waves are particularly damaging to buildings.
- Rayleigh waves
- They are characterized by a modulation in terms of height
- Love waves
- They modulate left and right along the length of their path

Earthouake Wave Propagation

- Seismic wave behavior
- P waves arrive first, then S waves follow, and then the L and R will arrive
- The average speeds for all these waves is known
- After an earthquake, the difference in arrival times at a seismograph station can be used to calculate the distance from the seismograph to the epicenter.

78

EARTHQUAKE US MAP

Peak Acceleration $(\% \mathrm{~g})$ with 10% Probability of Exceedance in 50 Years USGS Map, Oct. 2002 rev

- The US Geological S produced this map for t
- It rates regions of the US a to how earthquake prone they

Estimating Earthouake Forces

- How to estimate the maximum forces generated by the earthquake?
- For each specific site a Maximum Considered Earthquake (MCE) is defined. This is an event with a 2% probability of exceedence in 50 years or a $\mathrm{Tr} \sim 2500$ years.
- There are three Methods to obtain seismic forces

1. Simplified Lateral Analysis (Equivalent Lateral Force analysis)
2. Spectral Analysis-Modal Response
3. Time History Analysis

- The American Society of Civil Engineers and its branch the Structural Engineering Institute produce a very useful reference that is coded as ASCE/SEI 7, which provides data for the calculation of seismic loads

SIMPLIFIED EARTHOUAKE ANALYSIS

- A simplified Method

- It is a method where the seismic deformations are assumed to increase linearly according to the height of the building:

Estimating Earthouake Forces

- A step by step process:
- For each specific site a Maximum Considered Earthquake (MCE) is defined. This is an event
- Step1- Determination of maximum considered earthquake and design spectral response accelerations:

1) Determine the mapped maximum considered earthquake MCE spectral response accelerations
2) Determine the site class based on the soil properties
3) Determine the maximum considered earthquake spectral response accelerations adjusted for site class effects "SM"
4) Determine the 5% damped design spectral response accelerations "SD"

- Step 2-Determination of seismic design category andlmportance factor
- Step 3-Determination of the Seismic Base Shear
- Step 4-Vertical Distribution of Seismic Forces
- But this reaches beyond the boundaries of what should be anticipated in the Architectural Record Examinations, so it may be optimum to move to another subject...

Wind LOADS

HOW DO SHEAR WALLS WORK?

On LATERAL LOADS

- What is the difference between a rigid and a flexible diaphragm?
- Plywood and un-topped steel decks may be considered flexible.
- Concrete and concrete filled metal decks are considered rigid.
- A flexible diaphragm moves more than 2 times the drift of the adjacent vertical bracing elements.
- Seismic forces are distributed based on tributary areas on structures with flexible diaphragms like a beam with elastic qualities would.
- Torsional moment is taken into account in structure with rigid diaphragms for the distribution of the seismic forces.
- Torsional moment is the resultant of the seismic force multiplied by the distance between the center of mass and the

Concentration of stress in rigid diaphragm

Deflection of stress in flexible diaphragm

On LATERAL LOADS

- The effect of lateral loads

 depends upon the rotation that the force may generate:- Consider that you have a location where the resultant force is going to be applied,
- And then consider that there will be a point that will remain stable.
- That second point will be acting in a fashion similar to a hinge of a door.
- The force acting on the center of mass will cause a torsional effect and the building will be rotating!

WIND LOADS

- What would be applicable codes?

Wind Speed in Baltimore

Search Results

Query Date: Sat Jun 032017
Latitude: 39.2904
Longitude: -76.6122
ASCE 7-10 Windspeeds (3 -sec peak gust in mph^{*}):
Risk Category I: 105
Risk Category II: 115
Risk Category III-IV: 120 MRI ${ }^{* *}$ 10-Year: 76
MRI** 25 -Year: 84
MRI** 50 -Year: 90
MRI** 100-Year: 96

ASCE 7-05 Windspeed:
 90 (3 -sec peak gust in mph) ASCE 7-93 Windspeed:
 70 (fastest mile in mph)

WIND LOADS

- The issue with the codes?

- 2012 IBC and 2012 IRC don't deal with this issue very well.
- Simplifications for the residential code make things confusing for the IBC!
- So what do you do?
- 2012 IBC: multiply design pressures by 0.6
- 2012 IRC: use Table R301.2(2) without any adjustments

89

WIND LOADS

- Solution:

- By extrapolation from the tables, $p=29.28$, i.e.
- Design Pressure $=29.3^{\text {psf }}$

COMPONENT AND CLADDING LOADS FOR A BUILDING WITH A MEAN
ROOF HEIGHT OF 30 FEET LOCATED IN EXPOSUPE B (psf$)^{\text {abs.cide }}$

- MRH less than 30 feet
- Window size $=20$ square feet
- Find required DP using 2012 IRC
- Window in corner zone

	ZONE	EFFECTIVE WIND AREA (feet)	BASIC WIND SPEED (mpho. -se fond gust)																							
			85		90		100		105		110		120			,	130		140		145		150		170	
	4	10	13.0	-14.1	14.6	-15.8	18.0	-19.5	19.8	21.	21.8	23.6	25.9	28.	8.1	30.5	30.4	33.0	35.3	38.2	37.8	41.0	40.5	13.9	520	.56.4
	4	20	12.4	-135	13.9	-15.1	17.2	-18.7	189	20.	20.8	22.6	24.7	79	6.5	29.2	29.0	31.6	33.7	36.7	35.1	39.3	38.7	12.1	19.6	F4.1
	4	50	11.6	- 127	13.0	-14.3	16.1	-17.6	17.8	-19.	19.5	21.3	23.	25.4	5	27.5	27.2	29.8	31.6	3.6	33.9	37.1	36.2	39.7	48.6	. 51.0
6	4	100	11.1	- 122	12.4	-13.6	15.3	-16.8	16.9	18:	18.5	20.4	20	21.2	39	26.3	25.9	28.4	30.0	33.0	322	35.4	34.4	37.8	14.2	48.6
3	5	10	13.0	17.4	14.6	-12.5	18.0	-24.1	19.8	26.	21.8		25.9	31.7	8.1	37.6	30.4	-10.7	35.3	47.2	37.8	50.6	40.5	54.2	52.0	0.6
	5	20	12.4	16.2	13.9	. 18.2	172	-22.5	18.9	24.8	20.8	27.2	24.7	32.4	6.8	35.1	29.0	38.0	33.7	4.0	36.1	47.2	38.7	50.5	19.6	64.9
	5	50	11.6	-14.7	13.0	- 16.5	16.1	20.3	17.8	22.4	19.5	24.5	23.2	293	25.2	. 31.8	27.2	34.3	31.6	398	33.9	12.7	362	45.7	16.6	. 58.7
	5	100	11.1	-13.5	12.4	-15.1	15.3	. 18.7	169	-20.6	8.5	22.6	220	26.9	23.9	29.2	25.9	31.6	30.0	36.7	32.2	39.3	3.4	12.1	14.2	54.1

A rigid diaphragm structure is subjected to wind loads as indicated in the diagram. The windl loads are transferred to the shear walls. Each of the shear walls carry relative rigidity as indicated in the diagram
-Determine the forces on Shear walls A and E

Shear Walls R values $R_{A}:=5 R_{B}:=4 R_{E}:=4 R_{C}:=1 R_{D}:=1$
w load $\quad \mathrm{w}:=.35 \frac{\mathrm{kip}}{\mathrm{ft}}$ Total Length: $\mathrm{L}_{\mathrm{EW}}:=200$ ftength $\mathrm{AB}: \mathrm{L}_{\mathrm{AB}}:=65 \mathrm{ft}$ Length $\mathrm{BE}: \mathrm{L}_{\mathrm{BE}}:=135 \mathrm{ft}$ Length $\mathrm{N} / \mathrm{S}: \mathrm{L}_{\mathrm{NS}}:=65 \mathrm{ft}$

Solution:

1) Calculating the moment resultant force:
$\mathrm{V}:=\mathrm{w} \cdot \mathrm{L}_{\mathrm{EW}} \quad \mathrm{V}=70 \cdot \mathrm{kip}$
2) Calculating the center of rigidity of the system (using the West wall as reference):
$x:=\frac{0 f t \cdot R_{A}+L_{A B} \cdot R_{B}+L_{E W} \cdot R_{E}}{R_{A}+R_{B}+R_{E}}$

$$
\mathrm{X}=81.54 \cdot \mathrm{ft}
$$

$\mathrm{u}:=\frac{\mathrm{L}_{\mathrm{NS}}}{2}=32.5 \mathrm{ft}$ (Byon
(By observation of symmetry)
3) Calculating the torsional moment:
$M:=v \cdot\left(\frac{L_{E W}}{2}-x\right)$

$$
\mathrm{M}=1292.31 \cdot \mathrm{k}^{\prime}
$$

3) Calculating the polar moment of inertia for the walls that resist the torsional moment:
$\mathrm{J}:=\mathrm{R}_{\mathrm{A}} \cdot \mathrm{X}^{2}+\mathrm{R}_{\mathrm{B}} \cdot\left(\mathrm{X}-\mathrm{L}_{\mathrm{AB}}\right)^{2}+\mathrm{R}_{\mathrm{E}} \cdot\left(\mathrm{X}-\mathrm{L}_{\mathrm{EW}}\right)^{2}+2\left(\frac{\mathrm{~L}_{\mathrm{NS}}}{2}\right)^{2} \quad \mathrm{~J}=92581.73 \cdot \mathrm{ft}^{2}$
4) Calculating the maximum lateral force resisted by walls A and E (adding the contribution of each of these walls to direct shear V and the resistance due to torsional moment :
$\mathrm{V}_{\mathrm{A}}:=\frac{\left(\mathrm{R}_{\mathrm{A}} \cdot \mathrm{V}\right)}{\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}}+\frac{\mathrm{M} \cdot \mathrm{R}_{\mathrm{A}} \cdot x}{\mathrm{~J}}$

$$
\mathrm{V}_{\mathrm{A}}=32.61 \cdot \mathrm{kip}
$$

$V_{E}:=\frac{\left(R_{E} \cdot v\right)}{R_{A}+R_{B}+R_{E}}+\frac{M \cdot R_{E} \cdot\left(L_{E W}-x\right)}{J} \quad V_{E}=28.15 \cdot \mathrm{kip}$

A single story commercial buildingcarries a roof that consists of wood joists, supported by timber beams and sheathed with a nailed and blocked plywood diaphragm. NS lateral forces are indicated in the diagram. The plywood shear wals carry the dimensions shown in the diagram and below

- Determine the axial compression and tension forces in the Shear walls B.
Disregard accidental torsion as it may be required by code.

Wall height $\mathrm{h}:=14 \mathrm{ft}$

$\mathrm{w}_{2}:=.33 \frac{\mathrm{kip}}{\mathrm{ft}}$ ength $\mathrm{AB}:$
$\mathrm{L}_{\mathrm{AB}}:=60 \mathrm{ft}$ Length BC :
$\mathrm{L}_{\mathrm{BC}}:=120$ flength $\mathrm{N} / \mathrm{S}: \quad \mathrm{L}_{\mathrm{NS} \text { wall }}:=25 \mathrm{ft}$

Solution:

1) Calculating the resultant force:

$$
\mathrm{V}:=\mathrm{w}_{1} \cdot \frac{\mathrm{~L}_{\mathrm{AB}}}{2}+\mathrm{w}_{2} \cdot \frac{\mathrm{~L}_{\mathrm{BC}}}{2}
$$

2) Calculating the Compressive and Tensile reactions:

$$
\begin{aligned}
& \mathrm{M}:=\mathrm{V} \cdot \mathrm{~h} \\
& \mathrm{~T}:=\frac{\mathrm{M}}{\mathrm{~L}_{\mathrm{NSwall}}}
\end{aligned}
$$

$\mathrm{C}:=\mathrm{T}=14.448 \mathrm{kip}$

On the Vignette

3.1 Vignette

- There's isn't really much to

 say...:- Just don't use the load bearing walls,
- Don't span joists more than 35', preferably 30' max
- Beams are to be used to
- Carry joists,
- Under Clerestory
- To carry upper wall when

 adjacent to a lower roof
- Pretty much, consider what the load path is.
- If there is an interruption of the path that will be wrong,
- If you have structure supporting nothing, that will also be wrong!

4.0 Vignette

- Let's see, what is this beam doing here?

